

AFRL-IF-RS-TR-2006-10
Final Technical Report
January 2006

BENCHMARKING AND ANALYSIS OF HIGH
PRODUCTIVITY COMPUTING (HPCS)

University of Tennessee

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. Q600

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2006-10 has been reviewed and is approved for publication

APPROVED: /s/

CHRISTOPHER J. FLYNN
Project Engineer

 FOR THE DIRECTOR: /s/

JAMES A. COLLINS, Deputy Chief
Advanced Computing Division
Information Directorate

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
JANUARY 2006

3. REPORT TYPE AND DATES COVERED
Final May 04 – Oct 05

4. TITLE AND SUBTITLE
BENCHMARKING AND ANALYSIS OF HIGH PRODUCTIVITY COMPUTING
(HPCS)

6. AUTHOR(S)
Jack Dongarra and
Piotr Luszczek

5. FUNDING NUMBERS
C - FA8750-04-1-0219
PE - N/A
PR - HPCS
TA - 00
WU - TC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Tennessee
1122 Volunteer Blvd
Knoxville Tennessee 37996-3450

8. PERFORMING ORGANIZATION
 REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Defense Advanced Research Projects Agency AFRL/IFTC
3701 North Fairfax Drive 26 Electronic Parkway
Arlington Virginia 22203-1714 Rome New York 13441-4514

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2006-10

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Christopher Flynn/IFTC/(315) 330-3249/ Christopher.Flynn@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
The goal of performance modeling is to measure, predict, and understand the performance of a computer program or
set of programs on a computer system. The applications of performance modeling are numerous, including evaluation
of algorithms, optimization of code implementations, parallel library development, and comparison of system
architectures, parallel system design, and procurement of new systems. The overall objective of this effort was to survey
a number of DoD related applications in an effort to ascertain their needs with respect to determining what metrics exist,
what metrics need to be developed.

15. NUMBER OF PAGES
19

14. SUBJECT TERMS
High Performance Computing, Productivity, Benchmarking

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

TABLE OF CONTENTS

SUMMARY... 1
INTRODUCTION .. 1
METHODS, ASSUMPTIONS, AND PROCEDURES.. 2
INTEGRITY OF THE BENCHMARK CODE ... 3
RESULTS OVERVIEW .. 4
BENCHMARK DATA... 4
RULES FOR RUNNING THE BENCHMARK .. 6
PROJECT'S WEBSITE... 7
CONCLUSIONS... 8
REFERENCES ... 9
APPENDIX A: BENCHMARK CODE.. 11
ACRONYMS .. 15

1

Summary
The work for this project comprised of the following major areas:

 • Provide a focused research and development program, creating new generations of
high end programming benchmarks in order to realize a new vision of high end
computing, high productivity computing systems (HPCS).

 • Expose the issues of low efficiency, scalability, software tools and environments, and
growing physical constraints.

 • Architecture performance characterization of parallel systems being developed for
the DAPRA High Productivity Computing Systems Program.

 • Development of software for the benchmarking and performance evaluation of key
components of high performance systems.

 • Development of methods for guiding the collection of performance data and for
analyzing and abstracting from measured performance data.

 • Helping to promote this effort in the community

The objectives of this effort are:

 • To establish a comprehensive set of parallel benchmarks that is generally accepted
by both users and vendors of parallel systems.

 • To provide a focus for parallel benchmark activities and avoid unnecessary
duplication of effort and proliferation of benchmarks.

 • To set standards for benchmarking methodology and result-reporting together with a
control database/repository for both the benchmarks and the results.

 • To make the benchmarks and results freely available in the public domain.

 • To engage the high performance community in helping define the future expansion of
the benchmark collection.

 • To run HPC Challenge over a range of parameters.

 • Collect and make available performance results in a standard web based format.

 • To compute software and hardware metrics.

 • Apply the run time tools being studied by the Execution Time modeling group to
HPC Challenge.

Introduction
Unfortunately, much of the literature focuses on ad hoc approaches to evaluation of
systems rather than on potential standardization of the benchmark process. If
benchmarking is to mature sufficiently to meet the requirements of system architects as
well as application and algorithm developers, it must address the issue of standardization.

A number of projects such as Perfect, NPB, ParkBench, and others have laid the
groundwork for what we hope will be a new era in benchmarking and evaluating the

2

performance of computers. The complexity of these machines requires a new level of
detail in measurement and comprehension of the results. The quotation of a single
number for any given advanced architecture is a disservice to manufacturers and users
alike, for several reasons. First, there is a great variation in performance from one
computation to another on a given machine; typically the variation may be one or two
orders of magnitude, depending on the type of machine. Secondly, the ranking of similar
machines often changes as one goes from one application to another. So, for example, the
best machine for circuit simulation may not be the best machine for computational fluid
dynamics. Finally, the performance depends greatly on a combination of compiler
characteristics and the human effort that was expended on obtaining the results.

Methods, Assumptions, and Procedures
This first phase of the project developed, hardened, and reported on a number of
benchmarks. The collection of tests included tests on a single processor (local) and tests
over the complete system (global). Each examined performance evaluation for spatial
locality and temporal locality. The tests on a local basis include DGEMM, STREAM,
RandomAccess, and FFT and the tests on a global basis included High Performance
Linpack, PTRANS, RandomAccess, and FFT.

The most reliable technique for determining the performance of a program on a computer
system is to run and time the program (multiple times), but this can be very expensive
and it rarely leads to any deep understanding of the performance issues. It is also does not
provide information on how performance will change under different circumstances (e.g.,
scaling the problem or system parameters, or porting to a different machine).

An alternative approach to running the actual application codes is to develop a set of
representative benchmark programs and to run these benchmarks on various systems with
various problem and system sizes. Problems with this approach are that a quantitative
analysis of the measured data is necessary to allow a deeper understanding and
interpretation - i.e., abstraction - of the measured results. Statistical analysis techniques
require a large amount of data to be collected. However, collecting data for all possible
system and problem parameter settings is impractical. Hence, a determination needs to be

made of what and how much data needs to be collected to provide an adequate basis for
sound analysis.

Another approach is to generate a model of the program and the computer system and use
the model to make performance predictions, varying model parameters to simulate
varying program and computer system parameters. The difficulty with this approach is in
generating and validating the model. The performance of production-level application
codes is a result of complex interactions between processor architecture, memory access
patterns, the memory hierarchy, the communication subsystem, and the system software.
Modeling each of the complex components of the system alone is a challenge. Still more
challenging is the task of accurately modeling the interactions between components and
the performance of complex application codes on the entire system.

3

Our approach in the second phase of this effort was to investigate the performance
modeling problem by combining benchmarking, statistical analysis, and hierarchical
modeling techniques to produce accurate models that can predict performance of
complex applications on today's and tomorrow's high performance systems.

Although this work did not directly address performance engineering of complex
application codes, our work laid the basis for the construction of parallel libraries that
allow the reconstruction of application codes on several distinct architectures so as to
assure performance portability. Once the requirements of applications are well
understood, one can construct a library in a layered fashion.

The overall objective of this effort was to survey a number of DARPA related
applications in an effort to ascertain their needs with respect to determining what metrics
exist and what metrics need to be developed. In the course of this effort we helped in
defining the metrics for future productivity, in particular:

 • Temporal data locality measures the memory access patterns' reuse of data in CPU
time domain. In other words, it measures the likelihood of a datum to be used in two
close points in time.

 • Spatial data locality measures the memory access patterns' reuse of data in memory
address space domain. In other words, it measures the likelihood of two data being
used provided that they are close to each other in memory.

 • SLOC count is a simple yet very effective measure of code complexity and in turn
characterizes very well the human effort involved in writing, maintaining, and
refactoring a piece of code.

Using the above metrics, a set of representative application kernels were selected that
reveal system performance and productivity under the workloads of varying values of the
metrics so that bounds can be established for end-user applications.

Integrity of the Benchmark Code
The HPCC benchmark includes existing and well known benchmark codes as well as not
so well known codes that were not intended for benchmarking by their authors. In both
cases one may argue that it is possible to obtain HPCC-equivalent functionality by
running each of the included tests separately or some subset thereof. Based on our
extensive experience in high performance benchmarking, utilization of the entire suite, up
to this point, offers as complete an analysis of benchmarking as has ever been done.
There are a few important reasons why performing individual or subset tests would be
neither practical nor complete:

 1. Uniform verification Each code was examined and (as necessary) was augmented
with a robust verification procedure that ensures numerical correctness of the result.
This is in sharp contrast to traditional forms of benchmarking that only focus on best
performance (or best time).

 2. Reasonable optimization In the hands of a skillful benchmarking engineer, each of
HPCC’s individual tests alone can be optimized beyond any skillful user's
comprehension. Such scenario is made unlikely with an HPCC framework that

4

encapsulates all the tests in a single runtime thus excluding the possibility of switching
the tested system into a special mode that would only benefit a single test. Another
contribution of HPCC is the transfer of knowledge from the benchmarking engineer to
the user as the optimization techniques are meant to be disclosed by the party
submitting results.

 3. Convenience and correctness Running each of HPCC's tests separately requires
manual effort which is cumbersome, costly and error prone if done in a robust and
reliable manner. HPCC eliminates this by automating the process of gathering
performance data on widely applicable hardware characteristics.

Results Overview
As a result of this project, software was developed in an open source mechanism and
distributed to the community via the normal channels for open source software – a
publicly available web page is used for downloading stable releases of the software while
read-only CVS access may be used for development snapshots. Occasionally, the source
code was distributed via email if other means were inaccessible. There was a monthly
phone call and/or Access Grid meetings of participants to exchange ideas and progress as
well as an electronic mailing list to assist with participant communication. Finally, the
lead participants participated in face-to-face meetings as needed, and there has been at
least one such meeting annually.

The problem area may be characterized by most common memory access patterns and is
defined by seven benchmarks: HPL, DGEMM, STREAM, PTRANS, RandomAccess,
FFT, and Latency/Bandwidth:

 1. HPL is the Linpack Toward Peak Performance (TPP) benchmark. The test stresses
the floating point performance of a system.

 2. DGEMM measures the floating point rate of execution of double precision real
matrix-matrix multiplication.

 3. STREAM is a benchmark that measures sustainable memory bandwidth (in GB/s)
of simple vector application kernels.

 4. PTRANS (from the ParkBench suite) measures the rate of transfer for large arrays
of data between multiprocessor's memories.

 5. RandomAccess measures the rate of integer updates of random memory locations.

 6. FFT measures the floating point rate of execution of double precision complex one-
dimensional Discrete Fourier Transform (DFT).

 7. Latency/Bandwidth measures (as the name suggests) latency and bandwidth of
communication patterns of increasing complexity between as many nodes as is time-
wise feasible.

Benchmark Data
To ensure broad impact and scientific value of the benchmark suite, results from a vast
array of data is collected for each submission. The data is gathered in a database that has

5

read-only public access. The data in the database can be divided into the following
categories:

 • CPU parameters such as floating-point execution rate (measured in Gflop/s) of
various computational kernels

 • Memory subsystem parameters such as data transfer rates (measured in GB/s) for
various CPU workloads and memory bus sharing scenarios

 • Communication subsystem parameters such as transfer rates (measured in GB/s)
across the system interconnect and message latencies (measured in micro-seconds)

 • Hardware, software, and productivity optimizations including complete description
of the hardware configuration, software environment and tools that were used to
produce the executable, and all the specific changes applied to the optimized run.

Benchmark Optimization and Result Database
 An integral part of HPCC is the database that stores various optimization techniques
applicable to the HPCC tests as well as the results of applying these optimizations. All of
the data is time stamped and consistently gathered from every system submitted to the
HPCC website. As such, it constitutes invaluable resource for both hardware and
software vendors as well as application vendors. The optimization portion of the database
stores two types of information:

1. Hardware/software optimization This portion includes reports on how the
programming environment and system libraries influence hardware and its performance.

2. Productivity optimization This part of the database shows how the human factor is
included in the overall system design. In particular the result submitters describe changes
made for the optimized run of the benchmark. Based on this information, conclusions
may be drawn about feasibility and actual performance gains for end-applications.

 The results portion of the database includes various computer system parameters
gathered during benchmark run. In particular, the data may be divided into three groups:

1. Processor parameters

These include floating-point execution rates for computational kernels such as global
linear equation solving, local matrix multiplication and local/global FFT. Numerical
capabilities of the processor are noted as well by measuring relevant numerical norms
that assess correctness and quality of the delivered solution.

2. Memory parameters

These include transfer rates of multiple sorts that show performance of the simplest data
movement scenarios (CPU-memory transfer) and more elaborate schemes that involve
multiple CPU calculations combined with simultaneous accesses to multiple memory
modules.

3. Interconnect parameters

Essentially, two types of parameters are considered: latency and bandwidth. But the
measurement scenarios used to obtain them vary greatly from the simple polling-driven

6

scheme with only two interconnect end-points exchanging data in a synchronous fashion
to network-capacity, limited tests of raw communication and computation-interleaved
probes that rely on communication system throughput and tolerance of high volume
traffic.

Rules for Running the Benchmark

The HPCC rules ensure integrity of the benchmark code when run repeatedly on the user
system by requiring a wide range of data to provide exhaustive information about the
system used for benchmarking and conditions under which the run took place. Due to the
fact that the HPCC benchmark is already being used in procurement cycles at many
supercomputing centers, we maintain the rules and make them available at the web site.
The rules are included here verbatim:

There must be one baseline run submitted for each computer system entered in the
archive. There may also exist an optimized run for each computer system.

 1. Baseline Runs: Optimizations as described below are allowed.

 1. Compile and load options Compiler or loader flags which are supported and
documented by the supplier are allowed. These include porting, optimization, and
preprocessor invocation.

 2. Libraries Linking to optimized versions of the following libraries is allowed:

 1 . BLAS

 2. MPI Acceptable use of such libraries is subject to the following rules:

 3. All libraries used shall be disclosed with the results submission. Each library shall
be identified by library name, revision, and source (supplier). Libraries which are

 not generally available are not permitted unless they are made available by the

reporting organization within six months.

 1. Calls to library subroutines should have equivalent functionality to that in the
released benchmark code. Code modifications to accommodate various library call
formats are not allowed.

 2. Only complete benchmark output may be submitted - partial results will not be
accepted.

 2. Optimized Runs

 1. Code modification Provided that the input and output specification is preserved,
the following routines may be substituted:

 1. In HPL: HPL_pdgesv(), HPL_pdtrsv() (factorization and substitution
functions)

 2. no changes are allowed in the DGEMM component

 3. In PTRANS: pdtrans()

7

 4. In STREAM: tuned_STREAM_Copy(), tuned_STREAM_Scale(),
tuned_STREAM_Add(), tuned_STREAM_Triad()

 5. In RandomAccess: MPIRandomAccessUpdate() and RandomAccessUpdate()

 6. In FFT: fftw_malloc(), fftw_free(), fftw_create_plan(), fftw_one(),
fftw_destroy_plan(), fftw_mpi_create_plan(), fftw_mpi_local_sizes(),
fftw_mpi(), fftw_mpi_destroy_plan() (all these functions are compatible with
FFTW 2.1.5 so the benchmark code can be directly linked against FFTW 2.1.5
by only adding proper compiler and linker flags, e.g. -DUSING_FFTW)

 7. In Latency/Bandwidth component alternative MPI routines might be used for
communication. But only standard MPI calls are to be preformed and only to the
MPI library that is widely available on the tested system.

 2. Limitations of Optimization

 1. Code with limited calculation accuracy The calculation should be carried out
in full precision (64-bit or the equivalent). However the substitution of
algorithms is allowed (see Exchange of the used mathematical algorithm).

 2. Exchange of the used mathematical algorithm Any change of algorithms must
be fully disclosed and is subject to review by the HPC Challenge Committee.
Passing the verification test is a necessary condition for such an approval. The
substituted algorithm must be as robust as the baseline algorithm. For the matrix
multiply in the HPL benchmark, Strassen Algorithm may not be used as it
changes the operation count of the algorithm.

 3. Using the knowledge of the solution Any modification of the code or input
data sets, which uses the knowledge of the solution or of the verification test, is
not permitted.

 4. Code to circumvent the actual computation Any modification of the code to
circumvent the actual computation is not permitted.

Project's Website
In order to provide easy access to the results of this project a publicly available web site
was developed. The website can be accessed at http://icl.cs.utk.edu/hpcc/ (the site has
nearly 2000 visitors per month and has been used to download the benchmark code by
almost 1000 visitors). It consists of the following components:

 • Rules for running the benchmark and reporting results.

 • News item from external media outlets.

 • Download page that allows to download the benchmark code in various forms and
versions.

 • Frequently Asked Questions has an extensive list of questions frequently encountered
in benchmarking and pertaining to the HPCC Suite.

 • Resource page with (mostly external) links related to the benchmark suite.

 • Pages with sponsors and collaborators that made the project possible.

8

 • Web form for submitting information about tested system and the output of the
benchmark.

 • Database read-only interface that allows users to interactively obtain various views of
the submitted data or export the contents of the database for archiving or more
thorough analysis on user system.

The entire contents of the website, including the source code (in PDF format) for all
seven releases of the benchmark suite, have been placed on a CD accompanying this
report.

Conclusions
The impact of this work on the community is the availability of an easy mechanism to
test, evaluate and compare high productivity systems. The applications of performance
modeling are numerous, including evaluation of algorithms, optimization of code
implementations, parallel library development, comparison of system architectures,
parallel system design, and procurement of new systems.

The main components of the HPC Challenge Benchmark Suite are based on existing
codes that are well known and used in the HPC community. This fact greatly contributes
to wider adoption of our effort. In addition, our framework combines these existing codes
together in a unique way by defining very specific rules about the conditions under which
they should be run and some of the included tests are used in new scenarios. We also
largely expanded on the benchmark deployment and results data to facilitate fairness of
performance assessment.

9

References

 1. Alice E. Koniges, Rolf Rabenseifner and Karl Solchenbach: “Benchmark Design

for Characterization of Balanced High-Performance Architectures,” In IEEE
Computer Society Press, www.computer.org/proceedings/, Proceedings of the 15th
International Parallel and Distributed Processing Symposium (IPDPS'01), Workshop
on Massively Parallel Processing (WMPP), April 23-27, 2001, San Francisco, USA.

 2. Rolf Rabenseifner and Alice E. Koniges: “Effective Communication and File-I/O
Bandwidth Benchmarks,” In J. Dongarra and Yiannis Cotronis (Eds.), Recent
Advances in Parallel Virtual Machine and Message Passing Interface, Proceedings of
the 8th European PVM/MPI Users' Group Meeting, EuroPVM/MPI 2001, Santorini,
Greece, Sep. 23-26, LNCS 2131, pp 24-35.

 3. Jack Dongarra, Piotr Luszczek, and Antoine Petitet: “The LINPACK Benchmark:
Past, Present, and Future,” Concurrency and Computation: Practice and Experience
15(9):803-820, August 2003, ISSN 1532-0634.

 4. John D. McCalpin, STREAM: Sustainable Memory Bandwidth in High
Performance Computers. http://www.cs.virginia.edu/stream/

 5. Antoine Petitet, R. Clint Whaley, Jack Dongarra, Andy Cleary, HPL - A Portable
Implementation of the High Performance Linpack Benchmark for Distributed-
Memory Computers, http://www.netlib.org/benchmark/hpl/

 6. PARKBENCH - PARallel Kernels and BENCHmarks,
http://www.netlib.org/parkbench/

 7. Jack Dongarra and Piotr Luszczek: “Introduction to the HPC Challenge Benchmark
Suite,” Computer Science Department Technical Report 2005, UT-CS-05-544,
University of Tennessee Knoxville.

 8. Stephen Shankland. “Supercomputer ranking method faces revision”, Published
June 18, 2004. CNET News.com,
http://news.com.com/Supercomputer+ranking+method+faces+revision/2100-7337_3-
5238405.html?tag=nefd.lede.

 9. Jan Stafford. “Cray CTO: Supercomputers outshine Linux clusters in HPC, Part 1”,
Published August 24, 2004. SearchEnterpriseLinux.com,
http://searchenterpriselinux.techtarget.com/originalContent/0,289142,sid39_gci10008
89,00.html

 10. Mark Hachman. “Alternative Supercomputer Metrics Sought”, Published
November 8, 2004. eWEEK.com,
http://www.eweek.com/article2/0,1759,1720493,00.asp.

 11. Christopher Lazou. “HPC Benchmarks: Going for Gold in a Computer
Olympiad?”, Published January 21, 2005. HPCwire,
http://www.tgc.com/hpcwire/hpcwireWWW/05/0121/109098.html

10

 12. “Cray XD1 Supercomputer Outscores Competition in HPC Challenge Benchmark
Tests; Benchmarks Assess Real-World Performance in Several Key Aspects of
Supercomputing”, published February 14, 2005. BusinessWire
http://home.businesswire.com/portal/site/google/index.jsp?ndmViewId=news_view&n
ewsId=20050214005533&newsLang=en

11

Appendix A: Benchmark Code
The initial public release of the benchmark included over 40,000 lines of C code, which
makes it impractical to provide as text in this report. However, the accompanying CD
contains the complete code source in both compressed and uncompressed formats.
Instead, a compact reference implementation is included in this report that gives a flavor
of the actual implementation. The reference implementation is written in a popular
scripting language called Python.

 1. HPL – Linpack reference implementation
 import numarray, time
 import numarray.random_array as naRA
 import numarray.linear_algebra as naLA
 n = 1000
 a = naRA.random([n, n])
 b = naRA.random([n, 1])
 t = -time.time()
 x = naLA.solve_linear_equations(a, b)
 t += time.time()
 r = numarray.dot(a, x) – b
 r_n = numarray.maximum.reduce(abs(r))
 print t, 2.0e-9 / 3.0 * n**3 / t
 print r_n, r_n / (n * 1e-16)
 2. DGEMM reference implementation
 import numarray, time
 import numarray.random_array as naRA
 n = 1000
 a = naRA.random([n, n])
 b = naRA.random([n, n])
 c = naRA.random([n, n])
 alpha = a[n/2, 0]
 beta = b[n/2, 0]
 t = -time.time()
 c = beta * c + alpha * numarray.dot(a, b)
 t += time.time()
 print t, 2e-9 * n**3 / t
 3. STREAM reference implementation
 import numarray, time
 import numarray.random_array as naRA
 import numarray.linear_algebra as naLA
 m = 1000
 a = naRA.random([m, 1])
 alpha = naRA.random([1, 1])[0]
 Copy, Scale = "Copy", "Scale"

 Add, Triad = "Add", "Triad"
 td = {}

12

 td[Copy] = -time.time()
 c = a[:]
 td[Copy] += time.time()
 td[Scale] = -time.time()
 b = alpha * c
 td[Scale] += time.time()
 td[Add] = -time.time()
 c = a * b
 td[Add] += time.time()
 td[Triad] = -time.time()
 a = b + alpha * c
 td[Triad] += time.time()
 for op in (Copy, Scale, Add, Triad):
 t = td[op]
 s = op[0] in ("C", "S") and 2 or 3
 print op, t, 8.0e-9 * s * m / t
 4. PTRANS reference implementation
 import numarray, time
 import numarray.random_array as naRA
 import numarray.linear_algebra as naLA
 n = 1000
 a = naRA.random([n, n])
 b = naRA.random([n, n])
 t = -time.time()
 a = numarray.transpose(a)+b
 t += time.time()
 print t, 8e-9 * n**2 / t
 5. RandomAccess reference implementation
 from time import time
 from numarray import *
 m = 1024
 table = zeros([m], UInt64)
 ran = zeros([128], UInt64)
 mupdate = 4 * m
 POLY, PERIOD = 7, 1317624576693539401L

 def ridx(arr, i, tmp):
 tmp[0:1] = arr[i:i+1]
 if tmp.astype(Int64)[0] < 0:
 tmp <<= 1
 tmp ^= POLY
 else:
 tmp <<= 1

 def starts(n):
 n = array([n], Int64)

13

 m2 = zeros([64], UInt64)
 while n[0] < 0: n += PERIOD
 while n[0] > PERIOD: n -= PERIOD
 if n[0] == 0: return 1
 temp = array([1], UInt64)
 ival = array([0], UInt64)
 for i in range(64):
 m2[i] = temp[0]
 ridx(temp, 0, ival)
 ridx(temp, 0, ival)
 for i in range(62, -1, -1):
 if ((n>>i) & 1)[0]: break
 ran = array([2], UInt64)
 while (i > 0):
 temp[0] = 0
 for j in range(64):
 if ((ran>>j) & 1)[0]:
 temp ^= m2[j:j+1]
 ran[0] = temp[0]
 i -= 1
 if ((n>>i) & 1)[0]:
 ridx(ran, 0, ival)
 return ran[0]
 ival = array([0], UInt64)
 t = -time()
 for i in range(m): table[i] = i
 for j in range(128):
 ran[j] = starts(mupdate / 128 * j)
 for i in range(mupdate / 128):
 for j in range(128):
 ridx(ran, j, ival)
 table[ran[j] & (m - 1)] ^= ran[j]
 t += time()
 temp = array([1], UInt64)
 for i in range(mupdate):
 ridx(temp, 0, ival)
 table[temp & (m - 1)] ^= temp
 temp = 0
 for i in range(m):
 if table[i] != i: temp += 1
 print t, 1e-9 * mupdate / t, 100.0*temp/m

 6. FFT reference implementation
 import numarray, numarray.fft, time, math

14

 import numarray.random_array as naRA
 m = 1024
 re = naRA.random([m, 1])
 im = naRA.random([m, 1])
 a = re + 1.0j * im
 t = -time.time()
 b = numarray.fft.fft(a)
 t += time.time()
 r = a - numarray.fft.inverse_fft(b)
 r_n = numarray.maximum.reduce(abs(r))
 Gflop = 5e-9 * m * math.log(m) / math.log(2)
 print t, Gflop / t, r_n

15

Acronyms
Explanation of acronyms used in this report:

 • CPU – Central Processing Unit

 • CSCS – Swiss Center for Scientific Computing

 • CVS – Concurrent Versions System

 • DARPA – The Defense Advanced Research Projects Agency

 • DFT – Discrete Fourier Transform

 • DGEMM – Double-precision General Matrix-Matrix multiply

 • FFT – Fast Fourier Transform

 • FFTE – an FFT code written in Fortran

 • FFTW – an FFT code written in C

 • HPCC – High Performance Computing Challenge Benchmark Suite

 • HPCS – High Productivity Computing Systems

 • HPL – High Performance Linpack benchmark

 • Linpack – LINear PACKage: a set of Fortran subroutines for numerical linear
algebra; also a benchmark based on one of the Linpack subroutines

 • MPI – Message Passing Interface

 • NPB – NAS Parallel Benchmarks

 • PARKBENCH – PARallel Kernels and BENCHmarks

 • PTRANS – Parallel matrix TRANSpose

 • PVM – Parallel Virtual Machine

 • RandomAccess – formerly known as GUPS benchmark

 • SLOC – Source Line of Code

 • STREAM – sustainable memory bandwidth test

